CS106A Handout #

198

Winter 2015 February 18, 2015

Section Solutions 6

Based on handouts by Eric Roberts and Mehran Sahami

Problem One: The Coupon Collector's Problem

Here is one possible solution:

import acm.program.*;
import acm.util.*;

public class CouponCollectorsProblem extends ConsoleProgram {
/* The number of sides on a die. */
private static final int DIE_FACES = 6;

public void run() {
/* Create an array of booleans that track whether or not we have seen
* each number. Initially, we haven't seen anything.
*

boolean[] used = new boolean[DIE_FACES];

/* Also track how many distinct values we've seen. When this reaches
* DIE_FACES, we're done.
*/

int numUsed = 0;

/* Finally, track how many times we've rolled the dice. */
int numRolls = 0;

while (numUsed !'= DIE_FACES) {
numRolls++;

/* Roll the die. */
RandomGenerator rgen = RandomGenerator.getInstance();
int side = rgen.nextInt(0, DIE_FACES - 1);

/* If we haven't rolled this number yet, mark it and update the number

* of faces that have come up so far.

*

if (!used[side]) {
used[side] = true;
numUsed++;

}

}

println("We needed to roll the dice

+ numRolls + " times.");

Problem Two: The Sieve of Eratosthenes

Here is one possible solution:

import acm.program.*;

public class SieveOfEratosthenes extends ConsoleProgram {
/* The value up to which we should find prime numbers. */
private static final int UPPER_LIMIT = 1000;

public void run() {
/* Create an array of booleans that track whether or not we have crossed off
* each number. Initially, each number has not been crossed off, so we want
* the booleans to all be false. Since this is what Java does anyway, we
* don't need to explicitly set the boolean values to false.
*

boolean[] crossedOff = new boolean[UPPER_LIMIT + 1];

for (int n = 2; n <= UPPER_LIMIT; n++) {
/* If this number has already been crossed off, we should skip it.
* Otherwise, it's a prime, and we should cross off all its multiples.
*/
if (!crossedOff[n]) {
/* Print this number; it's prime. */
println(n);

/* Cross off all its multiples. */

for (int k = n; k <= UPPER_LIMIT; k += n) {
crossedOff[k] = true;

}

}
}

Problem Three: Inverting Colors

private GImage invertColors(GImage toInvert) {
/* Get the original array of pixels. */
int[][] pixels = tolInvert.getPixelArray();

/* Determine the number of rows and columns. Each row of the image is
* represented by a row in the array.
*/
int numRows
int numCols

pixels.length;
pixels[0].length;

for (int row = 0; row < numRows; row++) {
for (int col = 0; col < numCols; col++) {
/* Determine the new RGB values from the old. */

int r = 255 - GImage.getRed(pixels[row][col]);
int g = 255 - GImage.getGreen(pixels[row][col]);
int b = 255 - GImage.getBlue(pixels[row][col]);

/* Convert this back to a pixel. */
pixels[row][col] = GImage.createRGBPixel(r, g, b);

}

/* Create a new image from this pixel array. */
return new GImage(pixels);

